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Equations of convection in a gas are analyzed and a computational algorithm that is efficient when the 
condition Itgh/ RT  << 1 is satisfied for an arbitrary (fairly large) temperature drop is proposed. Calculations 
of  convection occurring in steady nonuniform heating of walls are performed for axisymmetric argon- 

containing volumes of different shape. Results of these calculations demonstrate the establishment of steady 

and periodic motions of  the gas. 

Introduction. A standard approximation for investigating convection is the Boissinesq approximation [1-4 ], 

for which it is assumed that changes in density are so small that the condition ~Sp/p _< 1 is satisfied, i.e., the 

medium is, in essence, assumed to be incompressible. This is a good approximation for liquids, but for gases it 

imposes a substantial constraint on the temperature drop, which should also satisfy the relation cST/T << 1. With 

an arbitrary temperature drop, the changes in density are not small, and in this sense a gaseous medium cannot 

be considered incompressible. At the same time, solution of a complete system of gas dynamic equations that 

describes among other things the propagation of sound waves is impossible, since typical velocities in convection 

are by orders of magnitude lower than the sound velocity and the time step of numerical schemes is limited by the 

most rapid process allowed for by the scheme. 
Simple estimations show that for low velocities of motion, pressure in the system is almost constant over 

the space and it can be represented as p(x, t) = po(t) + p'(x, t), where po(t) is a constant-over-the-space value that 

is dependent on time, owing to the total heating or cooling of the system, and p(x, t) is small. This small correction 

to pressure can be allowed for only in the equation of motion, and the local density of the gas is determined by 

Po(O, and the local temperature, by the equation of state. The condition of consistency of the equation of motion 

and the continuity equation permits the formulation of an equation for p"(x, t). The elliptical character of this 

equation demonstrates that in a gaseous medium described in this manner there are no sound waves, which 

eliminates the above difficulties of choosing the time step. Essentially, the method proposed is a generalization to 

gaseous media of the known Harlow method [51, which is widely used to calculate incompressible fluid motion. 

1. Equations of Convection in a Gaseous Medium. Convection in a gas is described by a gas dynamic 

equation with viscosity and heat conduction allowed for [ 1 ]: 

D p_ div (v) (I)  
Dt = - P  

ov (2) 
p - ~  = p g  - V p  + Q , 

DT = f i T  ~ + div (kVT) + r f l  = - ( O p / O T ) p / p  . (3) 
pCp Dt Dt 

The gas pressure p is found from p and T using the equation of state 
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p = p ( p , T ) .  

Terms associated with viscosity are determined by the following expressions [2 ]: 

o (or, ov _z ov,) 

(4) 

(s) 

Ov t Ov~ 2 OVm ) Ovt (6) 
dp = r i ~ + Ox~ t 3 61k OX m ) OX k ' 

Summation over recurrent indexes k, l, and m is understood. The system of equations is closed by the boundary 

conditions 

Vi I at the boundary = 0 ,  

Tla! the boundary = T (/). 

(7) 

To simplify the initial equations, we perform simple estimate, assuming that convection occurs in the 

gaseous medium. If Ap is the characteristic change in density owing to heating, the heated gas, floating up at height 

h owing to the Archimedean force, acquires a velocity on the order of v - ~ / g h A p / p .  Actually, due to the influence 

of viscosity and the inflow of a cold gas, which make the motion slower, this velocity can be noticeably lower, which 

justifies our estimates to an even greater extent. When' the condition 

e = ~ << 1 (8) 

is satisfied, v turns out to be much lower than the sound velocity c N v r ~ .  Under the same conditions, the 

hydrostatic pressure Ph - p g h  and the dynamic pressure Pd - P  v2 turn out to be much lower than the total pressure: 

Pd < Ph << P- (9) 

Therefore, with a high degree of accuracy, the pressure is equal to 

p (x ,  t) = P0 (t) + p (x ,  t ) ,  (10) 

with p << P0 and P0 as a function of time being determined by the total heating of the gas. Since condition (8) is 

satisfied under laboratory conditions with a good safety margin, we can simplify the initial equations, retaining the 

pressure correction ~ only in the equation of motion (2). With the same degree of accuracy, we can ignore the 

energy dissipation due to viscosity in the heat-conduction Eq. (3). Having performed the indicated rearrangements, 
we obtain 

0_2_ _ _ (i1) 
Dt - p div (v),  

Dv ,,, (12) 
p " ~  = (p - po) g - Vp  + Q , 

o (ovi ov~ ) ( la)  
Q i = ~ x k  r] ~Xk + G  d , 

O T  dp o (14) 
p c  o - ~  = f iT  ~ + div (kVT) 

p0 (t) = p (t,, 73, ( i s )  
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where P0 is gas density averaged over the volume. 
The rearrangements made are of consequence. First, from Eq. (15) we see that the gas density is 

unambiguously determined by the temperature and the equation of state of the gas, Po being determined by the 

law of conservation of mass in the volume 

M = fpav. (16) 

The pressure correction p does not enter in the equation of state and has to be determined by other considerations. 

Namely, by calculating the divergence from Eq. (12) we obtain an elliptical equation for p. The method for solving 

these equations will be considered in detail later, and now we note only the most important consequence of the 

approximations made: sound waves do not propagate in the medium described by Eqs. (11)-(15). Since v << c this 

does not have any physical meaning but is of great importance in the adoption of numerical methods. 

For small temperature drops T' = T - To << T, further simplifications of the system of equations are 

possible. In this case, p - P0 = -POl ST' << P0. By discarding the change in density in heating everywhere except in 

the term with the lift, assuming k and y to be constant over the volume, and omitting the index in Po we obtain the 

system of equations 

Vv = o ,  (17) 

Dv = _ vt?_ + v A v  - flgT" (18) 
Dt P ' 

DT'  _ z A  T' (19) 
Dt 

where p - r l /p  is the kinematic viscosity and Z = k / p c p  is the thermal diffusivity. The equations of convection in 

the form of (17)-(19) are known as the Boussinesq approximation [1-4 ] and are widely used to analyze convection 

in liquids. Qualitative analysis of Eqs. (17)-(19) shows [2, 6 ] that in this case the character of flow is determined 

by the Rayleigh number 

Ra = gilT'h3 (20) 
' 

where h is the characteristic dimension of the volume. 
The present work seeks to extend the numerical method of calculating unsteady convection in gases for an 

arbitrary temperature drop and to perform calculations under conditions close to those of an experiment [71 in 

which different types of instabilities were observed. 

2. Numerical Method for Solution of Equations. The numerical methods adopted are substantially different 

for incompressible liquids and for gases. Although, to solve gas dynamic Eqs. (1)- (4), there is a plethora of different 

methods, they are the same in essence. If we know all characteristics of the flow at an instant t by calculating, 

using the equation of state (4), the forces that act on each element of the medium (1), we can determine the 

In Eq. (12), we replaced 

2 Ov l 
- "  + p 0 g x  - ' l  3 oxl' 

where P0 is the average-over-the-volume density of the gas which is, apparently, independent of time. This 

replacement somewhat simplifies the form of the equation. Furthermore, the very possibility of arbitrarily 

redetermination using this replacement of the diagonal part of the tensor of viscous stresses demonstrates 

that for the approximations made the factor of the second  viscosity [2 !, which we did not take into account 

in the equations, drops out completely from the solution. 
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Fig. I. (a) Stationary distribution of the temperature: l) 301 K, 2) 323, 3) 
346, 4) 368, 5) 390, 6) 413, 7) 435, 8) 457, 9) 480, 10) 502, II)  524, 12) 

546, 13) 569 K. (b) Stationary velocity field (the maximum velocity is 0.1 
m/sec).  

characteristics of the flow at the instant t + At. In all these methods, there is a limitation on the time step, which 
is called the Courant criterion [5 ]: 

At < A___~x (21) 
C + V '  

where Ax is the dimension of the space cells, and c is the sound velocity. This criterion is very stringent as applied 
to problems of convection in gaseous media, since the characteristic velocities observed in convection are by orders 

of magnitude lower than the sound velocity. 

To calculate liquid motion, a method [5 ] is known using which we can eliminate pressure from system of 

Eqs. (17)-(19). The essence of this method is as follows: if it is assumed that the pressure is known at all points 

of flow at the instant t, as is done for gaseous media, we can calculate the velocities of the liquid at the instant 

t + At using Eq. (18). If it is required now that these velocities satisfy continuity Eq. (17), we obtain a closed 

elliptical-type equation for the pressure. By solving this equation we can actually find the velocities at the instant 

t + At. As it turns out [5], for this method, the sound velocity drops out of the criterion on the time step (21), 

which is a consequence of the absence of sound waves in the solution of Eqs. (11).-(15) and (17)-(19). In the present 

work, this method is generalized for calculating slow (v << c), axisymmetric flows of a compressible gas allowing 

for heat conduction, viscosity, and gravitational force described by Eqs. (I I)-(15). A similar like method for plane 
flows is described in [8, 9 ]. 

If we know all parameters of the gas at the instant t n, the parameters at the instant / n+l= t n + At  are 

calculated in two steps. First we calculate T n+l in the entire volume using the solution to the heat-conduction 
equation 

,,,, ( r"+l - 7a 
p cp ~ + v"V7 a+l 

If we confine ourselves to the gas equation 

()n 
dpo 

= f f ' r "  + div (knVTn+l). (22) 

P = p R T  
i ~ , 

(23) 

then 

po (0 = - ~ -  f -  
(24) 
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Fig. 2. (a) Pressure in a volume vs time. Po, 10-1 MPa. (b) Kinetic energy in 

a volume vs time. Ekin, 10 -8 J; t, sec. 

Hence we find that 

dp 0 1 (25) 
dt  - M f p div (kVT) d V ,  

where ~, = Cu/C v is the adiabatic exponent.  Having determined the temperature and the densi ty on a new time layer,  

we calculate the velocity. We write continuity Eq. (11) according to an implicit scheme: 

n+l n 

P - P = - div (pn+lvn+l) (26) 
At 

and Eq. of motion (12) according to an explicit scheme: 

n+l n+l n n 
p v - / 9  v (,o n Vp + Qn S n (27) 

At = - Po) g - - , 

where S = (Vvn)pnv n. The  condition of consistency for these two equations yields an equation for the unknown p: 

A p =  p - P + d i v  p v Qn sn  ^ +prig  + _ . 

At 2 At 

(28) 

If we resort  once again to Eq. (27), the equation for pressure can be put into a more symmetric form: 

,,'. n+l _ 2pn n-I Qn . (29) 
Ap = P + P + div (png + _ S n) 

At 2 

By solving Eq. (28) we find, using (27), the velocities on the new time layer,  which completes the calculations on 

one time step. 

Equations (22), (27), and (28) are discretized by space variables using a grid with rectangular  cells, all 

scalar quantities and vector divergences being determined at the centers of the cells and the components of the 

vectors and the gradients from the scalars in the middles of the corresponding boundaries  of the cells. If a quantity 

is needed not at the point at which it has been determined,  we perform linear interpolation. The  resultant five-point 

equations for pressure and temperature are solved using an a - f l - i t e ra t ion  algorithm [10 ]. 

3. Results of the Calculations. By the described algorithm we performed calculations of convection in argon 

that confirmed the high efficiency of the algorithm. We used the gas equation and viscosity and thermal conductivity 

coefficients proportional to VT. The absolute values of the coefficients were taken according to [11 ]. 

We consider convection in argon in a cylindrical plane volume with a radius of 10 cm and a height of 1 cm. 

The  initial pressure of the argon is 0.06 MPa and the temperature is 290 K. The  bottom of the volume is maintained 

at a temperature of 580 K, and a linear distribution of the temperature from 580 to 290 K is maintained on the 

volume walls. The  initially quiescent gas comes into motion with heating. First, a vortex forms near  the wall along 

797 



a t - Jsec 
- - r  ; ; - . ,  -~ "z~..] 

I I I l l l # l ; ; ;  ~111 

I t l l l l l l l , ,  I 
~ 1 1 1 1 1 1 , . , ~  I 

I  IIIIllll!i:ii   , 

b t - J.J sec 

i i  i i  i i i i i i  , ~1 I I 

\ l l r  . . . . . . . . . . .  ' " '  l l ~ l l l , l l ~ . , .  " I I I  ~ ' 
~ i 1 , 1 , , ~ . .  . t #  �9 

\ ~ i l. - . . . . . .  
I i ,  . . . . . . . . . . . . . . .  

I # 1 ' . 1 1  " 

i i ~  

I ~t I .  
I " ~  I .  

d t * J,,8 sec 

i l l l  I I i i .  �9 I I  
I t l l | | l t s l l ' l  I 

!!:?iiii???!!i:: 

C 

4 

t -- 3,6 sec 

~I I I~2 : ' ; ' " "  1 I I ~ . , .  -,+'r # Ilil !!! itll!l 
I i t t ,  . . . . . .  " ' t ~ . '  I 

. . . . . . . . . .  : : : ~ "  

i ,I I I  
[ I $1 

e t - 4 s e c  

Fig. 3. Temperature and velocity fields at different time instants: 1) 301; 2) 

323; 3) 346; 4) 368; 5) 390; 6) 413; 7) 435; 8) 457; 9) 480; 10) 502; I1) 524; 

12) 546; 13) 569 K. 

which the heated gas rises up. The initiated motion breaks the unstable equilibrium, and nine more vortices form 

in turn. Some time later, the motion becomes steady. The steady temperature distribution and velocity field are 

shown in Figs. la and lb. Flow of a similar type observed experimentally in silicone oil is described in [12 ]. 

The second calculation was performed for a volume composed of two cylinders with radii of 0.5 and 1 cm 

and heights of 2 and 1 cm, respectively. A thin cylinder is located at the bottom. The bottom of this cylinder is 

maintained at a temperature of 580 K, and a linear distribution of temperature of from 580 to 290 K is maintained 

on its wall, while all surfaces of the wider cylinder are maintained at 290 K. The initial pressure of the argon is 

0.5 MPa. Figures 2a and 2b show the pressure po(t) and the total kinetic energy of the gas as functions of time. 

The character of the dependences shows clearly that under the conditions in question periodic motion of the gas 

with a period close to 1 sec is established. Figure 3 gives the temperature and velocity fields at different instants 

during one period. It is evident from the figure that the character of the flow is governed by the periodic penetration 

of the cold gas into the  region of the operating cell, its heating, and subsequent discharge into the cold region. 

Comparison of Figs. 3a and 3e shows that the flows are practically identical at these instants. 
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N O T A T I O N  

p,  density; v, velocity; p, pressure; g, free fall acceleration; t, time; x, coordinate; cp, heat capacity; T, 
temperature; fl, thermal expansion coefficient; k, thermal conductivity coefficient;/~, atomic weight; R, universal 
gas constant; r/, viscosity coefficient; c, sound velocity; v, coefficient of kinematic viscosity; Z, thermal diffusivity 
coefficient; Ra, Rayleigh number. 
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